skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ghosal, Aishani"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Active matter and driven systems exhibit statistical fluctuations in density and particle positions that are an indirect indicator of dissipation across length and time scales. Here, we quantitatively relate these fluctuations to a thermodynamic speed limit that constrains the rates of heat and entropy production in nonequilibrium processes. By reparametrizing the speed limit set by the Fisher information, we show how to infer these dissipation rates from directly observable or controllable quantities. This approach can use available experimental data as input and avoid the need for analytically solvable microscopic models or full time-dependent probability distributions. The heat rate we predict agrees with experimental measurements for a pulled Brownian particle and a microtubule active gel, which validates the approach and suggests potential for the design of experiments. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026